

Innovative isotropic steel solutions for high performance gears

Summary

01

SIDENOR PRESENTATION

02

REASONS TO REDUCE THE SULPHUR CONTENT 03

SIDENOR SOLUTION
TO ENHANCE THE
STEEL ISOTROPY
WITHOUT
INCREASING THE
COMPONENT
PRODUCTION COSTS

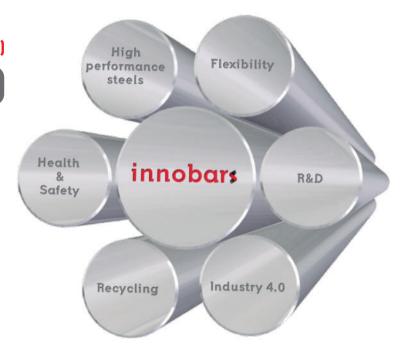
04

CONCLUSIONS

"Sidenor, a market leader in the European special steel long product industry, has the aim of being at the forefront of process and product innovation"

Annual Sales (Tonnes)

809,000

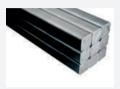

Revenues (mill€)

898

Employees

2,324

Product portfolio and main applications



Products

SEMIS

- CC Billets
- CC Rounds
- Blooms
- Ingots

HOT ROLLED BARS

- Rounds
- RCS
- Flats

WIRE ROD
• Coils

FORGED BARS

- Rounds
- RCS
- Flats

BRIGHT BARS

- Drawn
- Turned
- Ground

DRAWN WIRE

Automotive Applications

- Gears
- Common-rail
- Leaf springs

- Bearings
- Shafts
- CVJ's
- Steering racks

- Steering pinions
- Shock absorbers
- Fasteners
- ...

Non-Automotive Applications

OIL & GAS

WIND POWER

RAILWAY

OFF HIGHWAY EQUIPMENT

Research from the steelmaking to the final product

"The mission of **Sidenor R&D** is to create, develop, transfer and protect Sidenor technology in order to **reach innovative solutions in the production** and use of steel materials and components"

Development of higher performance steels

Cost optimization at the value chain

Characterization of second phase particles

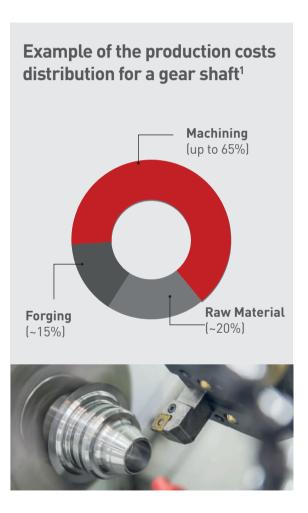
FEM simulations

02 | REASONS TO REDUCE THE SULPHUR CONTENT

Research from the steelmaking to the final product

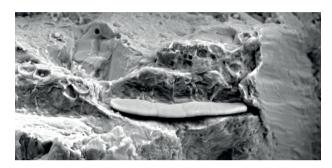
- To reduce the elevated machining costs, S is commonly added to the steel, forming MnS inclusions
- These MnS, which are softer than the steel matrix and act as voids, have the following beneficial effects on the machinability:

Lower power consumption



Shorter chips

Longer tool life



¹N. Anmark et al. "The effect of different non-metallic inclusions on the machinability of steels". Materials. Vol. 8, 751-783. 2015

Isotropy deterioration

The elongated shape of MnS deteriorates the steel isotropy, negatively affecting the transversal properties

Component failure

The isotropy worsening is especially adverse for parts loaded in different directions with regard to the steel fibre, i.e. gears

Looking for the equilibrium

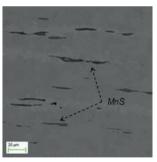
To improve the component performance, which will allow its downsizing, the steel isotropy must be enhanced. This improvement is achieved through the S content reduction. However, this S diminution leads to notably higher production costs.

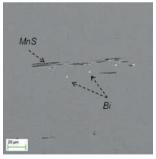
A compromise machinabilityperformance is required

An alternative to S

- The **Bi addition** to the steel is the basis of the **MECAMAX**®**MB** technology
- ✓ Bi is a non-toxic element that presents a low melting point. This, together with the low hardness of Bi inclusions, leads to the following benefits during the steel machining:

- ✓ Bi addition allows to reduce the S content without penalizing the steel machinability
- ✓ MECAMAX®MB technology can be applied to **any steel grade** to be used in **any application**




• MECAMAX® MB steels, compared to grades with higher S content, lead to:

01

Better steel isotropy

The small and spherical shape of Bi inclusions makes that, contrary to MnS, Bi presence hardly affects the steel isotropy

02

The same or better machinability

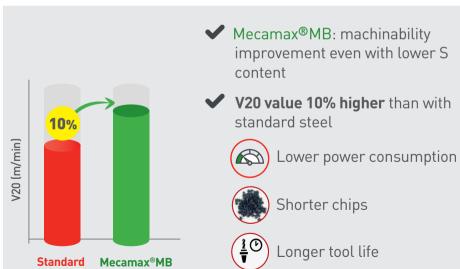
Lower power consumption

Shorter chips

Longer tool life

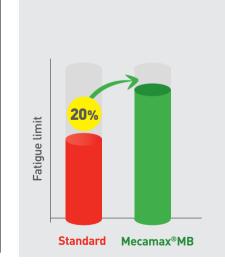
 Reducing the S content and applying MECAMAX®MB technology, an excellent compromise between isotropy and machinability is reached

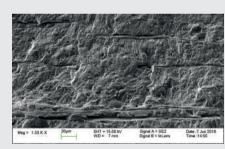
Case study: 20MnCr5


Machinability evaluation

- Testing procedure

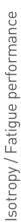
 Dry turning according to ISO 3685-1:1993
- Studied steels
 Subcritical annealing (210 HB)
 Standard: 20MnCr5 (0.035% S)

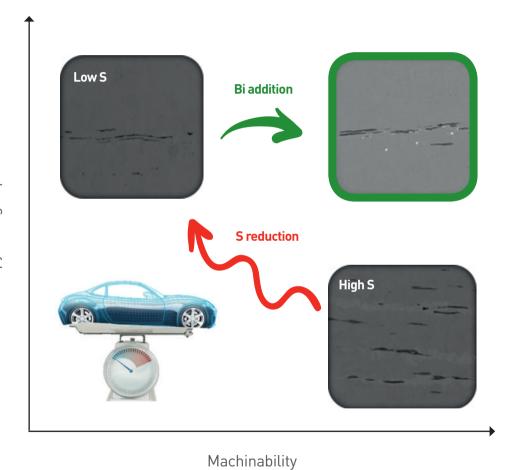

Fatigue studies


- Testing procedure

 Tooth bending fatigue tests; 100 Hz
- Studied steels
 Carburized gears (layer depth 0.4 mm)
 Standard: 20MnCr5 (0.035% S)

MECAMAX®MB: 20MnCr5 (0.020% S + Bi)





Fractures analysis

Using Mecamax®MB steels, the fatigue limit is increased in 20%. None of the fractures initiated in Bi inclusions, most of them in MnS

MECAMAX®MB: THE BEST COMPROMISE BETWEEN MACHINABILITY AND ISOTROPY!

Lower power consumption

Shorter chips

Longer tool life

Lower power consumption

Excellent fatigue performance

01

The technology **MECAMAX®MB** is the best solution to improve the steel isotropy without increasing the machining costs

02

This technology can be applied to **any steel grade, for any application** (automotive, energy...)

03

The attained **machinability** is **similar or better** to that of steels with higher S content. Besides, the **fatigue limit is increased** in 15-20%, which will allow the **component downsizing**

