ACERIUM Steel

Steel for large Carburized Gears

Applications and Features of Large Gears

Wind Turbine Drives

Main drive, pitch and yaw control

Industrial Heavy-Duty Drives

Low speed drives for steel rolling mills, rubber, plastic, paper and cement industries; High speed drives for energy generation

Applications and Features of Large Gears

Great Power Transmission, High Torque and Large Module Teeth

Large gears must transfer a great power and provide a high torque. Teeth need a large module to cope with usual loads and, consequently, the carburized case is substantially thicker

Tobie et Al. "Systematic Investigations on the Influence of Case Depth on the Pitting and Bending Strength of Case Carburized Gears", Gear Technology (2005)

Manufacturing Steps

Steelmaker	Forging & Rolling	Pre-Heat Treatment	Rough Machining	Carburizing	Hard Finishing
					•
Ingot Casting - Continuous Casting	Hot Forging Hot Rolling Ring Rolling	Annealing - Quenching & Tempering	Rough Machining and Hobbing	Case Hardening	Hard Finishing and Grinding
Raw Material Supplier	Raw Material Supplier	Gear Manufacturer	Gear Manufacturer	Gear Manufacturer	Gear Manufacturer
	Raw Material				

Raw Material
Premachining
Case Hardening
Hard Finishing

Problem to Solve

Large gears with large module teeth (i.e., 16 mm) need an effective carburized case proportionally deep (2,5 mm), but due to tooth distortion and further grinding to correct geometry, hardened cases are much deeper (up to 4-5 mm). So, carburizing times are extended even more (typically 80 hours @ 960°C) what increases distortion, which finally produces an inhomogeneous case

Problem to Solve

• Deeper carburized cases require longer carburizing treatments

Extensive and Expensive Grinding and Finishing Operations

sidener

Benefits of High Temperature Carburizing

- Shortening of carburizing treatment process
- Lower level of teeth distortions and narrower finishing allowance

Challenging AGS Control during Carburizing

- Challenging **austenitic grain size** control during carburizing treatment
- Austenitic grain size grows linearly with holding time at high temperature, unless microprecipitates pin the grain boundaries.

ACERIUM Steel

- ACERIUM steel has been developed by SIDENOR to **shorten the carburizing process**:
 - Through high temperature carburizing
 - Speeding up the carbon absorption and diffusion
- ...maintaining and guaranteeing a very fine austenitic grain size
 - Fatigue failures due to coarse grains become highly unlikely
- Economical benefits come from:
 - A substantial reduction of the carburizing process time
 - A reduced level of carburizing distortions, what influences noticeably on the case thickness to be hard machined or grinded after heat treatment

Micro-Alloying Strategy

Without rare earths

- The "rare earth" elements help to control the grain size and improve the carbon diffusivity during the carburizing process
- Nb & Al microalloying controls the austenitic grain size at high temperatures for long times

Steel	С	Si	Mn	Ρ	S	RE
1	0,20	0,28	0,48	0,009	0,011	-
2	0,19	0,26	0,49	0,013	0,010	0,024
3	0,18	0,27	0,49	0,005	0,004	0,032
4	0,19	0,28	0,48	0,014	0,002	0,130

Effective Austenitic Grain Size Control

• Austenitic grain size after carburizing process (30h @1050°c) keeps very fine

siden er

ACERIUM Applications

• ACERIUM Technology can be applied to any carburizing steel grade used for the manufacturing of large gears or other components, which, due to their big tooth module and total dimensions, must be carburized for extremely long times

ACERIUM Benefits

- **Economical savings** and higher flexibility during gear manufacturing:
 - Shortening of carburizing process
 - Minimizing of hard finishing and grinding operations due to lower teeth distortions
- Higher **reliability**
 - Guarantee of very fine austenitic grain size

Thank you!

Sidenor I+D

Barrio Ugarte s/n P.O. Box 152 48970 Basauri, Spain

sidenor.imasd@sidenor.com